\(\int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx\) [48]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 54 \[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx=-\frac {\cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

-cos(f*x+e)*ln(1-sin(f*x+e))/c/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {2920, 2816, 2746, 31} \[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx=-\frac {\cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

[In]

Int[Cos[e + f*x]^2/(Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

-((Cos[e + f*x]*Log[1 - Sin[e + f*x]])/(c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2746

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 2816

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[a
*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2920

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {\sqrt {a+a \sin (e+f x)}}{\sqrt {c-c \sin (e+f x)}} \, dx}{a c} \\ & = \frac {\cos (e+f x) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)} \, dx}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {\cos (e+f x) \text {Subst}\left (\int \frac {1}{c+x} \, dx,x,-c \sin (e+f x)\right )}{c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {\cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.56 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.93 \[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx=-\frac {2 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )}{f \sqrt {a (1+\sin (e+f x))} (c-c \sin (e+f x))^{3/2}} \]

[In]

Integrate[Cos[e + f*x]^2/(Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

(-2*Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]]*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*(Cos[(e + f*x)/2] + Sin[(
e + f*x)/2]))/(f*Sqrt[a*(1 + Sin[e + f*x])]*(c - c*Sin[e + f*x])^(3/2))

Maple [A] (verified)

Time = 0.16 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.33

method result size
default \(\frac {\left (\ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )-2 \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )\right ) \cos \left (f x +e \right )}{f \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, c}\) \(72\)

[In]

int(cos(f*x+e)^2/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/f*(ln(2/(1+cos(f*x+e)))-2*ln(csc(f*x+e)-cot(f*x+e)-1))*cos(f*x+e)/(-c*(sin(f*x+e)-1))^(1/2)/(a*(1+sin(f*x+e)
))^(1/2)/c

Fricas [F]

\[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{2}}{\sqrt {a \sin \left (f x + e\right ) + a} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(f*x+e)^2/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(a*c^2*sin(f*x + e) - a*c^2), x)

Sympy [F]

\[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx=\int \frac {\cos ^{2}{\left (e + f x \right )}}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(cos(f*x+e)**2/(c-c*sin(f*x+e))**(3/2)/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral(cos(e + f*x)**2/(sqrt(a*(sin(e + f*x) + 1))*(-c*(sin(e + f*x) - 1))**(3/2)), x)

Maxima [F]

\[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{2}}{\sqrt {a \sin \left (f x + e\right ) + a} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(f*x+e)^2/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(f*x + e)^2/(sqrt(a*sin(f*x + e) + a)*(-c*sin(f*x + e) + c)^(3/2)), x)

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.02 \[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx=\frac {2 \, \log \left ({\left | \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}\right )}{\sqrt {a} c^{\frac {3}{2}} f \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} \]

[In]

integrate(cos(f*x+e)^2/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

2*log(abs(sin(-1/4*pi + 1/2*f*x + 1/2*e)))/(sqrt(a)*c^(3/2)*f*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4
*pi + 1/2*f*x + 1/2*e)))

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2}{\sqrt {a+a\,\sin \left (e+f\,x\right )}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(cos(e + f*x)^2/((a + a*sin(e + f*x))^(1/2)*(c - c*sin(e + f*x))^(3/2)),x)

[Out]

int(cos(e + f*x)^2/((a + a*sin(e + f*x))^(1/2)*(c - c*sin(e + f*x))^(3/2)), x)